Multivalent Random Walkers - A Model for Deoxyribozyme Walkers

نویسندگان

  • Mark J. Olah
  • Darko Stefanovic
چکیده

We propose a stochastic model for molecular transport at the nanoscale that describes the motion of two-dimensional molecular assemblies called multivalent random walkers (MVRWs). This walker model is an abstract description of the motion of multipedal molecular assemblies, called molecular spiders, which use deoxyribozyme legs to move over a surface covered with substrate DNA molecules, cleaving them to produce shorter product DNA molecules as they go. In this model a walker has a rigid inert body and several flexible enzymatic legs. A walker moves over a surface of fixed chemical sites. Each site has one of several molecular species displayed, and walker legs can bind to and unbind from these sites to move over the surface. Additionally, the enzymatic activity of the legs allows them to catalyze irreversible chemical changes to the sites, thereby permanently modifying the state of the surface. We describe a MVRW system as a continuous-time Markov process, where all state transitions in the process correspond to chemical reactions of the legs with the sites. We model the kinetics of the leg reactions by considering the constrained diffusion of the walker body and unattached leg. Through kinetic Monte Carlo simulations, we show that the irreversibility of the enzymatic action of the legs can bias the motion of walkers and cause them to move superdiffusively over significant distances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Occupancy of a single site by many random walkers

We consider an infinite number of noninteracting lattice random walkers with the goal of determining statistical properties of the time, out of a total time T, that a single site has been occupied by n random walkers. Initially the random walkers are assumed uniformly distributed on the lattice except for the target site at the origin, which is unoccupied. The random-walk model is taken to be a...

متن کامل

Density and energy relaxation in an open one-dimensional system.

A new master equation to mimic the dynamics of a collection of interacting random walkers in an open system is proposed and solved numerically. In this model, the random walkers interact through excluded volume interaction (single-file system); and the total number of walkers in the lattice can fluctuate because of exchange with a bath. In addition, the movement of the random walkers is biased ...

متن کامل

Lattice paths: vicious walkers and friendly walkers

In an earlier paper [4] the problem of vicious random walkers on a d-dimensional directed lattice was considered. \Vicious walkers" describes the situation in which two or more walkers arriving at the same lattice site annihilate one another. Accordingly, the only allowed con gurations are those in which contacts are forbidden. Alternatively expressed as a static rather than dynamic problem, vi...

متن کامل

The height of watermelons with wall Extended

The model of vicious walkers was introduced by Fisher [4]. He gave a number of applications in physics, such as modelling wetting and melting processes. In general, the model of vicious walkers is concerned with p random walkers on a d-dimensional lattice. In the lock step model, at each time step all of the walkers move one step in any of the allowed directions, such that at no time any two ra...

متن کامل

Vicious Walkers and Random Contraction Matrices

The ensemble CUE(q) of truncated random unitary matrices is a deformation of the usual Circular Unitary Ensemble depending on a discrete non-negative parameter q. CUE(q) is an exactly solved model of random contraction matrices originally introduced in the context of scattering theory. In this article, we exhibit a connection between CUE(q) and Fisher’s randomturns vicious walker model from sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011